Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Science ; 382(6676): 1245-1246, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096277
2.
Science ; 382(6676): 1276-1281, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096384

RESUMO

The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens.


Assuntos
Galinhas , Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas/virologia , Herpesvirus Galináceo 2/classificação , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/patogenicidade , Linfoma/virologia , Doença de Marek/história , Doença de Marek/virologia , Virulência/genética , Filogenia
3.
J Virol ; 97(10): e0071623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737586

RESUMO

IMPORTANCE: Marek's disease virus (MDV) is a ubiquitous chicken pathogen that inflicts a large economic burden on the poultry industry, despite worldwide vaccination programs. MDV is only partially controlled by available vaccines, and the virus retains the ability to replicate and spread between vaccinated birds. Following an initial infection, MDV enters a latent state and integrates into host telomeres and this may be a prerequisite for malignant transformation, which is usually fatal. To understand the mechanism that underlies the dynamic relationship between integrated-latent and reactivated MDV, we have characterized integrated MDV (iMDV) genomes and their associated telomeres. This revealed a single orientation among iMDV genomes and the loss of some terminal sequences that is consistent with integration by homology-directed recombination and excision via a telomere-loop-mediated process.


Assuntos
Galinhas , Genoma Viral , Herpesvirus Galináceo 2 , Recombinação Homóloga , Doença de Marek , Telômero , Integração Viral , Animais , Galinhas/virologia , Genoma Viral/genética , Herpesvirus Galináceo 2/genética , Doença de Marek/genética , Doença de Marek/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Telômero/genética , Vacinas Virais/imunologia , Ativação Viral , Latência Viral , Integração Viral/genética
4.
BMC Genomics ; 23(1): 509, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836133

RESUMO

BACKGROUND: Duck plague virus (DPV), belonging to herpesviruses, is a linear double-stranded DNA virus. There are many reports about the outbreak of the duck plague in a variety of countries, which caused huge economic losses. Recently, increasing reports revealed that multiple long non-coding RNAs (lncRNAs) can possess great potential in the regulation of host antiviral immune response. Furthermore, it remains to be determined which specific molecular mechanisms are responsible for the DPV-host interaction in host immunity. Here, lncRNAs and mRNAs in DPV infected duck embryonic fibroblast (DEF) cells were identified by high-throughput RNA-sequencing (RNA-seq). And we predicted target genes of differentially expressed genes (DEGs) and formed a complex regulatory network depending on in-silico analysis and prediction. RESULT: RNA-seq analysis results showed that 2921 lncRNAs were found at 30 h post-infection (hpi). In our study, 218 DE lncRNAs and 2840 DE mRNAs were obtained in DEF after DPV infection. Among these DEGs and target genes, some have been authenticated as immune-related molecules, such as a Macrophage mannose receptor (MR), Anas platyrhynchos toll-like receptor 2 (TLR2), leukocyte differentiation antigen, interleukin family, and their related regulatory factors. Furthermore, according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis, we found that the target genes may have important effects on biological development, biosynthesis, signal transduction, cell biological regulation, and cell process. Also, we obtained, the potential targeting relationship existing in DEF cells between host lncRNAs and DPV-encoded miRNAs by software. CONCLUSIONS: This study revealed not only expression changes, but also the possible biological regulatory relationship of lncRNAs and mRNAs in DPV infected DEF cells. Together, these data and analyses provide additional insight into the role of lncRNAs and mRNAs in the host's immune response to DPV infection.


Assuntos
Patos/embriologia , Fibroblastos/virologia , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Animais , Surtos de Doenças/veterinária , Patos/genética , Patos/virologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Mardivirus , Doença de Marek/epidemiologia , Doença de Marek/imunologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/imunologia , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética , RNA Mensageiro/análise , RNA Mensageiro/genética
5.
J Virol ; 96(9): e0032122, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35412345

RESUMO

Circular RNAs (circRNAs) are a recently rediscovered class of functional noncoding RNAs that are involved in gene regulation and cancer development. Next-generation sequencing approaches identified circRNA fragments and sequences underlying circularization events in virus-induced cancers. In the present study, we performed viral circRNA expression analysis and full-length sequencing in infections with Marek's disease virus (MDV), which serves as a model for herpesvirus-induced tumorigenesis. We established inverse PCRs to identify and characterize circRNA expression from the repeat regions of the MDV genome during viral replication, latency, and reactivation. We identified a large variety of viral circRNAs through precise mapping of full-length circular transcripts and detected matching sequences with several viral genes. Hot spots of circRNA expression included the transcriptional unit of the major viral oncogene encoding the Meq protein and the latency-associated transcripts (LATs). Moreover, we performed genome-wide bioinformatic analyses to extract back-splice junctions from lymphoma-derived samples. Using this strategy, we found that circRNAs were abundantly expressed in vivo from the same key virulence genes. Strikingly, the observed back-splice junctions do not follow a unique canonical pattern, compatible with the U2-dependent splicing machinery. Numerous noncanonical junctions were observed in viral circRNA sequences characterized from in vitro and in vivo infections. Given the importance of the genes involved in the transcription of these circRNAs, our study contributes to our understanding and complexity of this deadly pathogen. IMPORTANCE Circular RNAs (circRNAs) were rediscovered in recent years both in physiological and pathological contexts, such as in cancer. Viral circRNAs are encoded by at least two human herpesviruses, the Epstein Barr virus and the Kaposi's Sarcoma-associated herpesvirus, both associated with the development of lymphoma. Marek's disease virus (MDV) is a well-established animal model to study virus-induced lymphoma but circRNA expression has not been reported for MDV yet. Our study provided the first evidence of viral circRNAs that were expressed at key steps of the MDV lifecycle using genome-wide analyses of circRNAs. These circRNAs were primarily found in transcriptional units that corresponded to the major MDV virulence factors. In addition, we established a bioinformatics pipeline that offers a new tool to identify circular RNAs in other herpesviruses. This study on the circRNAs provided important insights into major MDV virulence genes and herpesviruses-mediated gene dysregulation.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Galináceo 2 , Doença de Marek , RNA Circular , Animais , Galinhas , Estudo de Associação Genômica Ampla , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/patogenicidade , Linfoma/virologia , Doença de Marek/virologia , Proteínas Oncogênicas Virais/genética , RNA Circular/genética , RNA não Traduzido/genética , Virulência/genética
6.
Virology ; 568: 115-125, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35152043

RESUMO

Marek's disease (MD) vaccines reduce the incidence of MD but cannot control virus shedding. To develop new vaccines, it is essential to elucidate mechanisms of immunity to Marek's disease virus (MDV) infection. In this regard, gamma delta (γδ) T cells may play a significant role in prevention of viral spread and tumor surveillance. Here we demonstrated that MDV vaccination induced interferon (IFN)-γ+CD8α+ γδ T cells and transforming growth factor (TGF)-ß+ γδ T cells in lungs. γδ T cells from MDV-infected chickens exhibited cytotoxic activity. Importantly, γδ T cells from the vaccinated/challenged group exhibited maximum cytotoxic activity following ex vivo stimulation. These results suggest that MDV vaccines activate effector γδ T cells which may be involved in the development of protective immune responses against MD. Further, it was demonstrated that MDV infection increases the frequency of a subpopulation of γδ T cells expressing membrane-bound TGF-ß in MDV-infected birds.


Assuntos
Galinhas/imunologia , Doença de Marek/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Galinhas/virologia , Citocinas , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunização , Imunofenotipagem , Ativação Linfocitária , Contagem de Linfócitos , Doença de Marek/prevenção & controle , Doença de Marek/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Vacinas Virais/imunologia , Replicação Viral , Eliminação de Partículas Virais
7.
BMC Vet Res ; 18(1): 30, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35016700

RESUMO

BACKGROUND: Marek's disease (MD) is a lymphoproliferative disease caused by Gallid alphaherpesvirus 2 (GaHV-2, MDV-1), which primarily affects chickens. However, the virus is also able to induce tumors and polyneuritis in turkeys, albeit less frequently than in chickens. RESULTS: This is the first study in Turkey reporting the molecular characterization of a MDV-1 strain detected in a flock of backyard turkeys exhibiting visceral lymphoma. Here, MEQ, vIL-8, pp38 and 132-bp tandem repeat regions, which are frequently preferred in the pathotyping of MDV-1, were examined. It was determined that the MEQ gene of MDV-1/TR-21/turkey strain obtained in the present study encoded 339 amino acids (1020 nt) and had four proline-rich repeat regions (PPPP). Based on the nucleotide sequence of the MEQ gene of the MDV-1/TR-21/turkey strain, a phylogenetic tree was created using the MEGA-X software with the Maximum Likelihood Method (in 1000 replicates). Our strain was highly identical (> 99.8) to the Italian/Ck/625/16, Polish (Polen5) and some Turkish (Layer-GaHV-2-02-TR-2017, Tr/MDV-1/19) MDV-1 strains. Also, nt and aa sequences of the MEQ gene of our strain were 99.1 and 99.41% identical to another Turkish strain (MDV/Tur/2019) originated from chickens. Sequence analysis of pp38 and vIL-8 genes also supported the above finding. The identity ratios of nucleotide and amino acid sequences of vIL-8 and pp38 genes of MDV-1/TR-21/turkey strain were 99.64-100% and 99.79-100%, respectively, when compared with those of the Polish strain. According to 132-bp tandem repeat PCR results, the MDV-1/TR-21/turkey strain had five copies. CONCLUSIONS: These results suggested that the MDV-1/TR-21/turkey strain obtained from backyard turkeys can be either very virulent or very virulent plus pathotype, though experimental inoculation is required for precise pathotyping.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Doenças das Aves Domésticas , Animais , Herpesvirus Galináceo 2/genética , Doença de Marek/epidemiologia , Doença de Marek/virologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Sorogrupo , Turquia , Perus/virologia
8.
Viruses ; 14(1)2022 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35062316

RESUMO

Vaccines against Marek's disease can protect chickens against clinical disease; however, infected chickens continue to propagate the Marek's disease virus (MDV) in feather follicles and can shed the virus into the environment. Therefore, the present study investigated if MDV could induce an immunoregulatory microenvironment in feathers of chickens and whether vaccines can overcome the immune evasive mechanisms of MDV. The results showed an abundance of CD4+CD25+ and CD4+ transforming growth factor-beta (TGF-ß)+ T regulatory cells in the feathers of MDV-infected chickens at 21 days post-infection. In contrast, vaccinated chickens had a lower number of regulatory T cells. Furthermore, the expression of TGF-ß and programmed cell death receptor (PD)-1 increased considerably in the feathers of Marek's disease virus-infected chickens. The results of the present study raise the possibility of an immunoregulatory environment in the feather pulp of MDV-infected chickens, which may in turn favor replication of infectious MDV in this tissue. Exploring the evasive strategies employed by MDV will facilitate the development of control measures to prevent viral replication and transmission.


Assuntos
Galinhas/virologia , Plumas/virologia , Doença de Marek/imunologia , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Expressão Gênica , Herpesvirus Galináceo 2/imunologia , Doença de Marek/virologia , Vacinas contra Doença de Marek/imunologia , Baço/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Vacinação , Carga Viral/veterinária , Replicação Viral/fisiologia
9.
J Virol ; 96(5): e0142721, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34936483

RESUMO

Latency is a hallmark of herpesviruses, allowing them to persist in their host without virion production. Acute exposure to hypoxia (below 3% O2) was identified as a trigger of latent-to-lytic switch (reactivation) for human oncogenic gammaherpesviruses (Kaposi's sarcoma-associated virus [KSHV] and Epstein-Barr virus [EBV]). Therefore, we hypothesized that hypoxia could also induce reactivation of Marek's disease virus (MDV), which shares biological properties with EBV and KSHV (notably oncogenic properties), in lymphocytes. Acute exposure to hypoxia (1% O2) of two MDV-latently infected cell lines derived from MD tumors (3867K and MSB-1) induced MDV reactivation. A bioinformatic analysis of the RB-1B MDV genome revealed 214 putative hypoxia response element consensus sequences on 119 open reading frames. Reverse transcriptase quantitative PCR (RT-qPCR) analysis showed five MDV genes strongly upregulated early after hypoxia. In 3867K cells under normoxia, pharmacological agents mimicking hypoxia (MLN4924 and CoCl2) increased MDV reactivation, but to a lower level than real hypoxia. Overexpression of wild-type or stabilized human hypoxia inducible factor 1α (HIF-1α) in MSB-1 cells in normoxia also promoted MDV reactivation. Under such conditions, the lytic cycle was detected in cells with a sustainable HIF-1α expression but also in HIF-1α-negative cells, indicating that MDV reactivation is mediated by HIF-1 in a direct and/or indirect manner. Lastly, we demonstrated by a reporter assay that HIF-1α overexpression induced the transactivation of two viral promoters, shown to be upregulated in hypoxia. These results suggest that hypoxia may play a crucial role in the late lytic replication phase observed in vivo in MDV-infected chickens exhibiting tumors, since a hypoxic microenvironment is a hallmark of most solid tumors. IMPORTANCE Latent-to-lytic switch of herpesviruses (also known as reactivation) is responsible for pathology recurrences and/or viral shedding. Studying physiological triggers of reactivation is therefore important for health to limit lesions and viral transmission. Marek's disease virus (MDV) is a potent oncogenic alphaherpesvirus establishing latency in T lymphocytes and causing lethal T lymphomas in chickens. In vivo, a second lytic phase is observed during the tumoral stage. Hypoxia being a hallmark of tumors, we wondered whether hypoxia induces MDV reactivation in latently infected T lymphocytes, like previously shown for EBV and KSHV in B lymphocytes. In this study, we demonstrated that acute hypoxia (1% O2) triggers MDV reactivation in two MDV transformed T-cell lines. We provide some molecular basis of this reactivation by showing that hypoxia inducible factor 1 (HIF-1) overexpression induces MDV reactivation to an extent similar to that of hypoxia after 24 h. Hypoxia is therefore a reactivation stimulus shared by mammalian and avian oncogenic herpesviruses of different genera.


Assuntos
Herpesvirus Galináceo 2 , Fator 1 Induzível por Hipóxia , Hipóxia , Doença de Marek , Linfócitos T , Ativação Viral , Animais , Linhagem Celular Tumoral , Galinhas , Herpesvirus Galináceo 2/genética , Hipóxia/virologia , Fator 1 Induzível por Hipóxia/metabolismo , Linfoma , Doença de Marek/virologia , Linfócitos T/virologia
10.
Genes (Basel) ; 12(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34946806

RESUMO

Marek's disease (MD) was an immunosuppression disease induced by Marek's disease virus (MDV). MD caused huge economic loss to the global poultry industry, but it also provided an ideal model for studying diseases induced by the oncogenic virus. Alternative splicing (AS) simultaneously produced different isoform transcripts, which are involved in various diseases and individual development. To investigate AS events in MD, RNA-Seq was performed in tumorous spleens (TS), spleens from the survivors (SS) without any lesion after MDV infection, and non-infected chicken spleens (NS). In this study, 32,703 and 25,217 AS events were identified in TS and SS groups with NS group as the control group, and 1198, 1204, and 348 differently expressed (DE) AS events (p-value < 0.05 and FDR < 0.05) were identified in TS vs. NS, TS vs. SS, SS vs. NS, respectively. Additionally, Function enrichment analysis showed that ubiquitin-mediated proteolysis, p53 signaling pathway, and phosphatidylinositol signaling system were significantly enriched (p-value < 0.05). Small structural variations including SNP and indel were analyzed based on RNA-Seq data, and it showed that the TS group possessed more variants on the splice site region than those in SS and NS groups, which might cause more AS events in the TS group. Combined with previous circRNA data, we found that 287 genes could produce both circular and linear RNAs, which suggested these genes were more active in MD lymphoma transformation. This study has expanded the understanding of the MDV infection process and provided new insights for further analysis of resistance/susceptibility mechanisms.


Assuntos
Processamento Alternativo/genética , Galinhas/genética , Galinhas/virologia , Doença de Marek/genética , Baço/virologia , Animais , Perfilação da Expressão Gênica/métodos , Mardivirus/patogenicidade , Doença de Marek/virologia , Polimorfismo de Nucleotídeo Único/genética , RNA/genética , Sítios de Splice de RNA/genética , RNA Circular/genética , Transdução de Sinais/genética
11.
Vet Microbiol ; 262: 109248, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34628274

RESUMO

MicroRNAs (miRNAs) are a class of approximately 22 nucleotides long non-coding RNAs, and virus-encoded miRNAs play an important role in pathogenesis. Marek's disease virus (MDV) is an oncogenic avian alphaherpesvirus that causes immunosuppression and tumors in its natural host, chicken. In the MDV genome, 14 miRNA precursors and 26 mature miRNAs were identified, thus MDV has been used as a model to study the function of viral miRNAs in vivo. Recently, a cluster of miRNAs encoded by MDV, Cluster 3 miRNAs (miR-M8-M10), has been shown to restrict early cytolytic replication and pathogenesis of MDV. In this study, we further analyzed the role of miR-M6 and miR-M10, members of cluster miR-M8-M10, in MDV replication and pathogenicity. We found that, compared to parental MDV, deletion of miR-M6-5p significantly enhanced the replication of MDV in cell culture, but not in chickens. The replication of miR-M6-5p deletion MDV was restored once the deleted sequences were re-inserted. Our results also showed that deletion of miR-M10-5p did not affect the replication of MDV in vitro and in vivo. In addition, our animal study results showed that deletion of miR-M6-5p or miR-M10-5p did not alter the pathogenesis of MDV. In conclusion, our study shows that both miR-M6 and miR-M10 are dispensable for MDV replication and pathogenesis in chickens, while also suggests a repressive role of miR-M6 in MDV replication in cell culture.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , MicroRNAs , Replicação Viral , Animais , Células Cultivadas , Galinhas , Herpesvirus Galináceo 2/genética , Doença de Marek/fisiopatologia , Doença de Marek/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Replicação Viral/genética
12.
Vet Res ; 52(1): 125, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593043

RESUMO

Efficient in vivo delivery of a CRISPR/Cas9 plasmid is of paramount importance for effective therapy. Here, we investigated the usability of Salmonella as a plasmid carrier for in vivo therapy against virus-induced cancer using Marek's disease virus (MDV) as a model for study in chickens. A green fluorescent protein-expressing CRISPR/Cas9 plasmid encoding the virulence gene pp38 was constructed against Marek's disease virus. Therapeutic plasmids were transformed into Salmonella carrying lon and sifA gene deletions. The animals in 5 groups were intraperitoneally inoculated with phosphate-buffered saline, vector control, or Salmonella before or after MDV infection, or left uninfected as a naïve control. Therapeutic effectiveness was evaluated by observing disease outcomes and the viral copy number in peripheral blood mononuclear cells. The efficacy of plasmid delivery by Salmonella was 13 ± 1.7% in the spleen and 8.0 ± 1.8% in the liver on the 6th day post-infection. The Salmonella-treated groups showed significant resistance to MDV infection. The maximum effect was observed in the group treated with Salmonella before MDV infection. None of the chickens fully recovered; however, the results suggested that timely delivery of Salmonella could be effective for in vivo CRISPR/Cas9-mediated genetic interference against highly pathogenic MDV. The use of Salmonella in CRISPR systems provides a simpler and more efficient platform for in vivo therapy with CRISPR than the use of conventional in vivo gene delivery methods and warrants further development.


Assuntos
Sistemas CRISPR-Cas , Galinhas , Herpesvirus Galináceo 2/fisiologia , Doença de Marek/prevenção & controle , Plasmídeos/uso terapêutico , Doenças das Aves Domésticas/prevenção & controle , Salmonella/fisiologia , Animais , Feminino , Leucócitos Mononucleares/virologia , Doença de Marek/patologia , Doença de Marek/virologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , Salmonella/virologia
13.
Genes (Basel) ; 12(10)2021 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681024

RESUMO

The avian α-herpesvirus known as Marek's disease virus (MDV) linearly integrates its genomic DNA into host telomeres during infection. The resulting disease, Marek's disease (MD), is characterized by virally-induced lymphomas with high mortality. The temporal dynamics of MDV-positive (MDV+) transformed cells and expansion of MD lymphomas remain targets for further understanding. It also remains to be determined whether specific host chromosomal sites of MDV telomere integration confer an advantage to MDV-transformed cells during tumorigenesis. We applied MDV-specific fluorescence in situ hybridization (MDV FISH) to investigate virus-host cytogenomic interactions within and among a total of 37 gonad lymphomas and neoplastic splenic samples in birds infected with virulent MDV. We also determined single-cell, chromosome-specific MDV integration profiles within and among transformed tissue samples, including multiple samples from the same bird. Most mitotically-dividing cells within neoplastic samples had the cytogenomic phenotype of 'MDV telomere-integrated only', and tissue-specific, temporal changes in phenotype frequencies were detected. Transformed cell populations composing gonad lymphomas exhibited significantly lower diversity, in terms of heterogeneity of MDV integration profiles, at the latest stages of tumorigenesis (>50 days post-infection (dpi)). We further report high interindividual and lower intraindividual variation in MDV integration profiles of lymphoma cells. There was no evidence of integration hotspots into a specific host chromosome(s). Collectively, our data suggests that very few transformed MDV+ T cell populations present earlier in MDV-induced lymphomas (32-50 dpi), survive, and expand to become the dominant clonal population in more advanced MD lymphomas (51-62 dpi) and establish metastatic lymphomas.


Assuntos
Herpesvirus Galináceo 2/genética , Linfoma/genética , Doença de Marek/genética , Doenças das Aves Domésticas/genética , Animais , Carcinogênese/genética , Galinhas/genética , Galinhas/virologia , Herpesvirus Galináceo 2/patogenicidade , Interações Hospedeiro-Patógeno/genética , Hibridização in Situ Fluorescente , Linfoma/etiologia , Linfoma/patologia , Linfoma/virologia , Doença de Marek/complicações , Doença de Marek/patologia , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Neoplasias Esplênicas/etiologia , Neoplasias Esplênicas/genética , Neoplasias Esplênicas/patologia , Linfócitos T/virologia , Telômero/genética , Telômero/virologia , Integração Viral/genética
14.
Viruses ; 13(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34452285

RESUMO

Marek's disease (MD) in chickens is caused by Gallid alphaherpesvirus 2, better known as MD herpesvirus (MDV). Current vaccines do not block interindividual spread from chicken-to-chicken, therefore, understanding MDV interindividual spread provides important information for the development of potential therapies to protect against MD, while also providing a natural host to study herpesvirus dissemination. It has long been thought that glycoprotein C (gC) of alphaherpesviruses evolved with their host based on their ability to bind and inhibit complement in a species-selective manner. Here, we tested the functional importance of gC during interindividual spread and host specificity using the natural model system of MDV in chickens through classical compensation experiments. By exchanging MDV gC with another chicken alphaherpesvirus (Gallid alphaherpesvirus 1 or infectious laryngotracheitis virus; ILTV) gC, we determined that ILTV gC could not compensate for MDV gC during interindividual spread. In contrast, exchanging turkey herpesvirus (Meleagrid alphaherpesvirus 1 or HVT) gC could compensate for chicken MDV gC. Both ILTV and MDV are Gallid alphaherpesviruses; however, ILTV is a member of the Iltovirus genus, while MDV is classified as a Mardivirus along with HVT. These results suggest that gC is functionally conserved based on the virus genera (Mardivirus vs. Iltovirus) and not the host (Gallid vs. Meleagrid).


Assuntos
Antígenos Virais/metabolismo , Galinhas/virologia , Herpesvirus Galináceo 2/fisiologia , Doença de Marek/transmissão , Doença de Marek/virologia , Proteínas do Envelope Viral/metabolismo , Animais , Antígenos Virais/genética , Células Cultivadas , Herpesvirus Galináceo 1/classificação , Herpesvirus Galináceo 1/genética , Herpesvirus Meleagrídeo 1/classificação , Herpesvirus Meleagrídeo 1/genética , Herpesvirus Galináceo 2/classificação , Herpesvirus Galináceo 2/genética , Proteínas Recombinantes/metabolismo , Perus/virologia , Proteínas do Envelope Viral/genética , Replicação Viral
15.
Vet Ital ; 57(1): 29-39, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313096

RESUMO

Marek's disease (MD) is one of the most significant neoplastic diseases of poultry caused by Marek's disease virus (MDV), an oncogenic avian herpesvirus which is responsible for great economic losses to the poultry industry worldwide. MD is being manifested as an acute disease with lymphomas in multiple visceral organs. In the present study, an outbreak of MD was investigated in one of the poultry farms from Andhra Pradesh, India. The gross lesions in the affected birds included lymphomas in different visceral organs like liver, spleen, proventriculus, heart and ovaries. Histopathology revealed presence of uniform lymphoblastoid cell infiltration typical of MD. The isolation of the virus was carried out in duck embryo fibroblast cells. After three blind passages, the cell cultures revealed plaque formation typical of MDV. Further confirmation of the virus was carried out by PCR targeting 132 bp repeats of serotype­1 MDV and the oncogenes Meq and vIL­8 were amplified and sequenced. The nucleotide and phylogenetic analysis of the virus confirmed the virus as virulent serotype­ 1 MDV. The present outbreak suggests the need for change in the vaccination regimen of MD vaccination with appropriate serotype­ 1 MD vaccines in Indian poultry flocks as the HVT and bivalent vaccines are unable to protect the flocks against virulent MDV.


Assuntos
Surtos de Doenças/veterinária , Herpesvirus Galináceo 2/isolamento & purificação , Doença de Marek/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Aves Domésticas , Animais , Surtos de Doenças/prevenção & controle , Índia/epidemiologia , Doença de Marek/virologia , Reação em Cadeia da Polimerase/veterinária , Doenças das Aves Domésticas/virologia , Vacinação/veterinária
16.
Viruses ; 13(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070255

RESUMO

Marek's disease virus (MDV) is an oncogenic avian alphaherpesvirus whose genome consists of unique long (UL) and short (US) regions that are flanked by inverted repeat regions. More than 100 open reading frames (ORFs) have been annotated in the MDV genome, and are involved in various aspects of MDV biology and pathogenesis. Within UL and US regions of MDV, there are several unique ORFs, some of which have recently been shown to be important for MDV replication and pathogenesis. In this review, we will summarize the current knowledge on these ORFs and compare their location in different MDV strains.


Assuntos
Galinhas/virologia , DNA Viral/genética , Genoma Viral , Herpesvirus Galináceo 2/genética , Doença de Marek/virologia , Fases de Leitura Aberta , Animais , Proteínas Virais/genética , Replicação Viral
17.
Vet Microbiol ; 259: 109082, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34144834

RESUMO

MicroRNAs (miRNAs) are a class of ∼22 nucleotides non-coding RNAs that are encoded by a wide range of hosts. Viruses, especially herpesviruses, encode a variety of miRNAs that involved in disease progression. Recently, a cluster of virus-encoded miRNAs, miR-M8-M10, have been shown to restrict early cytolytic replication and pathogenesis of Marek's disease virus (MDV), an oncogenic avian alphaherpesvirus that causes lymphoproliferative disease in chickens. In this study, we specifically dissected the role of miR-M7, a member of cluster miR-M8-M10, in regulating MDV replication and pathogenesis. We found that deletion of miR-M7-5p did not affect the virus plaque size and growth in cell culture. However, compared to parental virus, infection of miR-M7-5p deletion virus significantly increased MDV genome copy number at 5 days post infection, suggesting that miR-M7 plays a role to restrict MDV replication during early cytolytic phase. In addition, our results showed that infection of miR-M7-5p deletion virus significantly enhanced the mortality of chickens, even it induced lymphoid organ atrophy similar to parental and revertant viruses. Taken together, our study revealed that the miR-M7 acts as a repressive factor of MDV replication and pathogenesis.


Assuntos
Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/patogenicidade , MicroRNAs/genética , Proteínas Virais/genética , Replicação Viral/genética , Animais , Células Cultivadas , Galinhas/virologia , Fibroblastos/virologia , Deleção de Genes , Herpesvirus Galináceo 2/crescimento & desenvolvimento , Doença de Marek/virologia , Organismos Livres de Patógenos Específicos , Fatores de Virulência/genética
18.
Sci Rep ; 11(1): 11084, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040106

RESUMO

Marek's disease virus (MDV) induces severe immunosuppression and lymphomagenesis in the chicken, its natural host, and results in a condition that investigated the pathogenesis of MDV and have begun to focus on the expression profiling of circular RNAs (circRNAs). However, little is known about how the expression of circRNAs is referred to as Marek's disease. Previous reports have is regulated during MDV replication. Here, we carried out a comprehensive profiling analysis of N6-methyladenosine (m6A) modification on the circRNA transcriptome in infected and uninfected chicken embryonic fibroblast (CEF) cells. Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) revealed that m6A modification was highly conserved in circRNAs. Comparing to the uninfected group, the number of peaks and conserved motifs were not significantly different in cells that were infected with MDV, although reduced abundance of circRNA m6A modifications. However, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses revealed that the insulin signaling pathway was associated with the regulation of m6A modified circRNAs in MDV infection. This is the first report to describe alterations in the transcriptome-wide profiling of m6A modified circRNAs in MDV-infected CEF cells.


Assuntos
Herpesvirus Galináceo 2/genética , Doença de Marek/virologia , RNA Circular/genética , Animais , Células Cultivadas , Galinhas , Fibroblastos/virologia , Perfilação da Expressão Gênica , Doença de Marek/genética
19.
J Virol ; 95(15): e0013121, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011541

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus of chickens that causes lymphomas in various organs. Most MDV genes are conserved among herpesviruses, while others are unique to MDV and may contribute to pathogenesis and/or tumor formation. High transcript levels of the MDV-specific genes MDV082, RLORF11, and SORF6 were recently detected in lytically infected cells; however, it remained elusive if the respective proteins are expressed and if they play a role in MDV pathogenesis. In this study, we first addressed if these proteins are expressed by inserting FLAG tags at their N or C termini. We could demonstrate that among the three genes tested, MDV082 is the only gene that encodes a protein and is expressed very late in MDV plaques in vitro. To investigate the role of this novel MDV082 protein in MDV pathogenesis, we generated a recombinant virus that lacks expression of the MDV082 protein. Our data revealed that the MDV082 protein contributes to the rapid onset of Marek's disease but is not essential for virus replication, spread, and tumor formation. Taken together, this study sheds light on the expression of MDV-specific genes and unravels the role of the late protein MDV082 in MDV pathogenesis. IMPORTANCE MDV is a highly oncogenic alphaherpesvirus that causes Marek's disease in chickens. The virus causes immense economic losses in the poultry industry due to the high morbidity and mortality, but also the cost of the vaccination. MDV encodes over 100 genes that are involved in various processes of the viral life cycle. Functional characterization of MDV genes is an essential step toward understanding the complex virus life cycle and MDV pathogenesis. Here, we have identified a novel protein encoded by MDV082 and two potential noncoding RNAs (RLORF11 and SORF6). The novel MDV082 protein is not needed for efficient MDV replication and tumor formation. However, our data demonstrate that the MDV082 protein is involved in the rapid onset of Marek's disease.


Assuntos
Transformação Celular Viral/genética , Herpesvirus Galináceo 2/genética , Doença de Marek/virologia , Proteínas Virais/genética , Animais , Linhagem Celular , Galinhas/virologia , Aves Domésticas/virologia , Replicação Viral/genética
20.
Open Vet J ; 11(1): 42-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898283

RESUMO

Background: Duck viral enteritis, commonly known as duck plague (DP), is an acute and contagious fatal disease in ducks, geese, and swans caused by the DP virus (DPV). It poses a serious threat to the growth of duck farming in the Haor (wetland) areas of Bangladesh. Aim: This study aimed to detect the circulating DPV by molecular characterization, followed by phylogenetic analysis, targeting the UL30 gene in infected ducks from five Haor districts in Bangladesh and to observe the variation in the genome sequence between the field virus and vaccine strain of DPV. Methods: A total of 150 samples (liver, 50; intestine, 50; and oropharyngeal tissue, 50) were collected from DP-suspected sick/dead ducks from 50 affected farms in Kishoreganj, Netrokona, B. Baria, Habiganj, and Sunamganj districts in Bangladesh. For the identification of DPV in collected samples, polymerase chain reaction (PCR) was utilized. Nucleotide sequences of the amplified UL30 gene were compared with those of other DPV strains available in GenBank. Results: Of the 150 samples, 90 (60%) were found to be positive for DPV, as confirmed by PCR. Organ-wise prevalence was higher in the liver (72%), followed by the intestine (64%) and oropharyngeal tissue (44%). Regarding areas, the highest and lowest prevalence in the liver and intestine was observed in Habiganj and B. Baria, respectively, whereas the highest and lowest prevalence in the oropharyngeal tissue was observed in B. Baria and Habiganj, respectively. Two isolates, BAU/KA/DPV(B1)/2014 from Kishoreganj and BAU/KA/DPV(B4)/2014 from Sunamganj were sequenced, and phylogenetic analysis revealed that these isolates are evolutionarily closely related to Chinese isolates of DPV. Additionally, the isolates of DPV BAU/KA/DPV(B1)/2014 and BAU/KA/DPV(B4)/2014 showed the highest (98%) similarity to each other. The nucleotide sequence of the isolate BAU/KA/DPV(B1)/2014 exhibited higher nucleotide variability (246 nucleotides) than that of the vaccine strain (accession no. EU082088), which may affect protein function and additional drug sensitivity. Conclusion: Based on the findings of the molecular study, it can be assumed that the Bangladeshi isolates and all Chinese isolates of DPV may have a common ancestry.


Assuntos
Patos , Mardivirus/genética , Doença de Marek/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Bangladesh/epidemiologia , Sequência de Bases , DNA Polimerase Dirigida por DNA/análise , Doença de Marek/virologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Doenças das Aves Domésticas/virologia , Prevalência , Proteínas Virais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...